Облачные системы интеллектуального видеонаблюдения. Программное обеспечение
Читать статью полностью
Облачные системы интеллектуального видеонаблюдения. Программное обеспечение(1,42 MB)Аннотация
В статье рассматривается логическая модель, позволяющая выполнять обработку изображений в облаке. Для управления процессами предлагается использовать механизмы, основанные на политиках. На основе предлагаемой модели разработано программное обеспечение с применением облачных платформ. Проведены эксперименты и получены оценки точности, быстродействия и других показателей эффективности систем интеллек- туального видеонаблюдения, обеспечиваемые за счет использования предложенной логической модели для обработки изображений в облаке.
Ключевые слова:
обработка изображений – image processing; управление данными – data management; модель данных – data model; логическая модель – logical model; облачные среды – cloud environments; программное обеспечение – software.
Список литературы
1. Aburukba, R. O. A heuristic scheduling approach for fog-cloud computing environment with stationary IoT devices / R.O. Aburukba, T. Landolsi, D. Omer // Journal of Network and Computer Applications. – 2021. – Vol. 180.
2. Tanwar, S. Multimedia Big Data Computing for IoT Applications: Concepts, Paradigms and Solutions / S. Tanwar, S. Tyagi, N. Kumar. – Berlin: Springer, 2019. – 491 p.
3. Fog Computing: A Platform for Internet of Things and Analytics / F. Bonomi, R. Milito, P. Natarajan, J. Zhu // Big Data and Internet of Things : A Roadmap for Smart Environments / N. Bessis, C. Dobre. – New York: Springer International Publishing, 2014. – P. 169–186.
4. Etemadi, M. Resource provisioning for IoT services in the fog computing environment: An autonomic approach / M. Etemadi, M. Ghobaei-Arani, A. Shahidinejad // Computer Communications. – 2020. – Vol. 161. – P. 109–131
5. Subbotin, A. N. Applying Machine Learning in Fog Computing Environments for Panoramic Teeth Imaging / A.N. Subbotin // 2021 XXIV International Conference on Soft Computing and Measurements (SCM) (Saint Petersburg, Russia, 2021). – 2021. – P. 237–239.
6. Subbotin, A. N. Application of Machine Learning Methods to Control the Process of Defectoscopy of Railway Tracks / A.N. Subbotin, V.S. Zhdanov // 2021 IV International Conference on Control in Technical Systems (CTS) (Saint Petersburg, Russia, 2021). – 2021. – P. 64–67.
7. Chadha, R. Policy-Driven Mobile Ad hoc Network Management / R. Chadha, L. Kant. – Hoboken, New Jersey: John Wiley & Sons, 2008. – 394 p.
8. Strassner, J. Policy-Based Network Management Solutions for the Next Generation / J. Strassner. – Burlington: Morgan Kaufmann Publishers, 2003. – 516 p.
9. RFC 3460. Policy Core Information Model (PCIM) Extensions. – URL : https://tools.ietf.org/html/rfc3460 (accessed on 7 September 2020).
10. Subbotin, A. Architecture of the intelligent video surveillance systems for fog environments based on embedded computers / A. Subbotin, N. Zhukova, T. Man // 2021 10th Mediterranean Conference on Embedded Computing (MECO) (Budva, Montenegro, 2021). – 2021. – P. 1–8.
11. Subbotin, A. N. Data Processing in Foggy Computing Environments for Machine Learning / A.N. Subbotin // 2021 II International Conference on Neural Networks and Neurotechnologies (NeuroNT) (Saint Petersburg, Russia, 2021). – 2021. – P. 51–53.
12. Htv dynamic load balancing algorithm for virtual machine instances in cloud / J. Bhatia, T. Patel, H. Trivedi, V. Majmudar // 2012 International Symposium on Cloud and Services Computing. – 2012. – P. 15–20.
13. Linear regression assisted prediction-based load balancer for cloud computing / A. Jaykrushna, P. Patel, H. Trivedi, J. Bhatia / 2018 IEEE Punecon. – 2018. – P. 1–3.
14. Towards end-to-end resource provisioning in Fog Computing over Low Power Wide Area Networks / J. Santos, T. Wauters, B. Volckaert, F. De Turck // Journal of Network and Computer Applications. – 2021. – Vol. 175. – P. 102915.
15. A Survey on Mobile Edge Computing: The Communication Perspective / Y. Mao, C. You, J. Zhang [et al.] // IEEE Communications Surveys & Tutorials. – 2017. – Vol. 19, No. 4. – P. 37–51.
16. Sdn-based real-time urban traffic analysis in vanet environment / J. Bhatia, R. Dave, H. Bhayani [et al.] // Computer Communications. – 2020. – Vol. 149. – P. 162–175.
17. Liu, Y. A framework of fog computing: architecture, challenges, and optimization / Y. Liu, J.E. Fieldsend, G. Min // IEEE Access. – 2017. – Vol. 5. – P. 25445–25454.
18. Matrouk, K. Scheduling Algorithms in Fog Computing: A Survey / K. Matrouk, K. Alatoun / International Journal of Networked and Distributed Computing. – 2021. – Vol. 9 (1). – P. 59–74.
19. Kaur, M. Energy-aware load balancing in fog cloud computing / M. Kaur, R. Aron // Materialstoday: Proceedings. – 2020.
20. Saecker, M. Big Data Analytics on Modern Hardware Architectures: A Technology Survey / M. Saecker, V. Markl // Lecture Notes in Business Information Processing / Wil M. P. van der Aalst [et al.]. – Berlin : Springer, 2013. – P. 125–149.
21. Key ingredients in an IoT recipe: fog computing, cloud computing, and more fog computing / M. Yannuzzi, R. Milito, R. Serral-Graci [et al.] // 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). – 2014. – P. 325–329.
22. Energy- and performance-aware load-balancing in vehicular fog computing / A.R. Hameed, S. ul Islam, I. Ahmad, K. Munir / Sustainable Computing: Informatics and Systems. – 2021. – Vol. 30. – P. 100454.
23. Bellendorf, J. Classification of optimization problems in fog computing / J. Bellendorf, Z. Á. Mann // Future Generation Computer Systems. – 2020. – Vol. 107. – P. 158–176.
24. Fog computing: principles, architectures, and applications / A.V. Dastjerdi, H. Gupta, R.N. Calheiros [et al.] // CoRR. – 2016. – abs/1601.02752.
25. Huang, C. Vehicular fog computing: architecture, use case, and security and forensic challenges / C. Huang, R. Lu, K.-K.R. Choo // IEEE Communications Magazine. – 2017. – Vol. 55 (11). – P. 105–111.
26. Cloud, or Edge: Where to Compute? / D. Kimovski, R. Matha, J. Hammer [et al.] // IEEE Internet Computing. – 2021. – arXiv:2101.10417v1. – P. 1–8.
27. Cloud, or Edge: Where to Compute? / D. Kimovski, R. Matha, J. Hammer [et al.] // Institute of Information Technology (ITEC), University of Klagenfurt. IEEE Internet Computing (May–June 2020). – P. 1–8.
28. Aazam, M. Fog computing and smart gateway-based communication for cloud of things / M. Aazam, E. Huh / 2014 International Conference on Future Internet of Things and Cloud. – 2014. – P. 464–470.
29. Johnson, S. M. Optimal two- and three-stage production schedules with setup times included / S.M. Johnson // Naval Research Logistics. Quarterly. – 1954. – Vol. I, Iss. I. – P. 61–68.
30. Ruiz, R. A comprehensive review and evaluation of permutation flowshop heuristics / R. Ruiz, C. Maroto // European Journal of Operational Research. – 2005. – Vol. 165, Iss. 2. – P. 479–494.
31. Gorlatova, M. Characterizing task completion latencies in multi-point multi-quality fog computing systems / M. Gorlatova, H. Inaltekin, M. Chiang // Computer Networks. – 2020. – Vol. 181. – P. 107526.
32. Chiang, M. Fog and IoT: An overview of research opportunities / M. Chiang, T. Zhang // IEEE Internet Things Journal. – 2016. – Vol. 3, No. 6. – P. 854–864.
33. Zhang, C. Design and application of fog computing and Internet of Things service platform for smart city / C. Zhang // Future Generation Computer Systems. – 2020. – Vol. 112. – P. 630–640.
34. Nawaz, M. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem / M. Nawaz, E E. Enscore, Jr. I. Ham // Omega. – 1983. – Vol. 11, Iss. 1. – P. 91–95.
35. Zahmatkesh, H. Fog computing for sustainable smart cities in the IoT era: Caching techniques and enabling technologies - an overview / H. Zahmatkesh, F. Al-Turjman // Sustainable Cities and Society. – 2020. – Vol. 59. – P. 102139.
36. Fettweis, G. P. The tactile Internet: Applications and challenges / G.P. Fettweis // IEEE Vehicular Technology Magazine. – 2014. – Vol. 9, No. 1. – P. 64–70.