Искусственный интеллект в модели кибербезопасности «Нулевое доверие»
Читать статью полностью
Искусственный интеллект в модели кибербезопасности «Нулевое доверие»(730,39 KB)Аннотация
В статье рассмотрены концептуальные основы построения систем кибербезопасности, созданные на комплексном применении новой архитектуры «Нулевого доверия» и технологий искусственного интеллекта. Этот подход можно рассматривать как смену парадигмы на стратегии обеспечения кибербезопасности. Ее основная цель – предотвратить утечки данных и ограничить распространение внутренних горизонтальных угроз.
Ключевые слова:
Кибербезопасность – cybersecurity; архитектура нулевого доверия – zero trust architecture; искусственный интеллект – artificial intelligence; машинное обучение – machine learning; аутентификация – authentication; авторизация – authorization.
Список литературы
1. Automation and orchestration of zero trust architecture: potential solutions and challenges / Y. Cao, S.R. Pokhrel, Y. Zhu [et al.] // Machine Intelligence Research. – 2024. – Vol. 21 (2). – P. 294–317.
2. Zero trust maturity model / CISA. – 2023. – URL : https://www.cisa.gov/sites/default/files/2023-04/CISA_ Zero_Trust_Maturity_Model_Version_2_508c.pdf (дата обращения: 09.07.2023).
3. Federated zero trust architecture using artificial intelligence / M. Hussain, S. Pal, Z. Jadidi [et al.] // IEEE Wireless Communications. – 2024. – Vol. 1 (2). – P. 30–35.
4. What is zero trust architecture? / Sans. – 2023. – URL : https://www.sans.org/blog/what-is-zero-trust-architecture/ (дата обращения: 10.09.2023).
5. When implementing zero trust, context is everything / Security Intelligence. – 2020. – URL : https://securityintelligence. com/posts/when-implementing-zero-trust-context-iseverything/ (дата обращения: 30.07.20230).
6. The impact of generative artificial intelligence on socioeconomic inequalities and policy making / V. Capraro, A. Lentsch, D. Acemoglu [et al.]. – 2023. – ArXiv abs/2401.05377.
7. Futuristic person re-identification over internet of biometrics things (IoBT): Technical potential versus practical reality / N.K.S. Behera, T.K. Behera, M. Nappi [et al.] // Pattern Recognition Letters. – 2021. – Vol. 151, No. C. – P. 163–171.
8. Improving the security and QoE in mobile devices through an intelligent and adaptive continuous authentication system / J.M.J. Válero, P.M.S. Sánchez, L.F. Maim [et al.] // Sensors. – 2018. – Vol. 18 (11). – P. 3769.
9. An introduction to context-aware security and user entity behavior analytics / Y. Arohan, A. Yadav, A. Pandey [et al.] // International Journal of Advance Research, Ideas and Innovations in Technology. – 2020. – Vol. 6 (5). – P. 27–33.
10. Investigating the prospects of generative artificial intelligence / M. Mandapuram, S.S. Gutlapalli, A. Bodepudi, M. Reddy // Asian Journal of Humanity, Art and Literature. – 2018. – Vol. 5 (2). – P. 167–174.
11. Voice recognition systems in the cloud networks: has it reached its full potential / A. Bodepudi, M. Reddy, S.S. Gutlapalli, M. Mandapuram // Asian Journal of Humanity, Art and Literature. – 2019. – Vol. 8 (1). – P. 51–60.
12. What is facial recognition and how does it work? // Norton [сайт]. – 2023. – URL : https://us.norton.com/blog/ iot/how-facial-recognition-software-works (дата обращения: 12.08.2023).
13. Ali, T. HuntGPT: Integrating Machine LearningBased Anomaly Detection and Explainable AI with Large Language Models (LLMs) / T. Ali, P. Kostakos // arXiv abs/2309.16021. – 2023.
14. Automation and orchestration of zero trust architecture: potential solutions and challenges / Y. Cao, S.R. Pokhrel, Y. Zhu [et al.] // Machine Intelligence Research. – 2024. – Vol. 21 (2). – P. 294–317.
15. Frankish, K. The Cambridge handbook of artificial intelligence / K. Frankish, W.M. Ramsey. – Cambridge : Cambridge University Press, 2014. – 365 p.
16. Mohammed, I. A. The interaction between artificial intelligence and identity and access management: an empirical study / I.A. Mohammed // International Journal of Creative Research Thoughts. – 2021. – Vol. 3, Iss. 1. – P. 668–671.
17. Artificial intelligence and machine learning are transforming Iam // Identity Management Institute [сайт]. – 2021. – URL : https:// ident ityma nagem entin stitu te. org/ artificial intelligence and machine learning are trans forming iam/ (дата обращения: 12.08.2023).
18. Zukerman, I. Predictive statistical models for user modeling / I. Zukerman, D.W. Albrecht // User Modeling and User-Adapted Interaction. – 2001. – Vol. 11 (1). – P. 5–18.
19. Rangaraju, S. Secure by intelligence: enhancing products with AI-driven security measures / S. Rangaraju // EPH – International Journal of Science And Engineering. – 2023. – Vol. 9 (3). – P. 36–41.
20. Комашинский, В. И. Нейронные сети и их применение в системах управления и связи / В.И. Комашинский, Д.А. Смирнов. – Москва : Горячая линия – Телеком, 2003. – 94 с.