Concerning entropy assessment criterion of information system quality
Abstract
The criterion for information systems based on K. Shannon's entropy is proposed. For this purpose membership functions of assessed fuzzy systems will be transformed to probability densities, for which the analytical and statistical facilities of the probability theory is in-depth and fully developed. Directions of possible researches are specified. One of them - sequential Wald analysis - can be the most significant in the future. Risk and damage assessment in gaming models is possible.
Keywords:
fuzzy sets; membership functions; differential entropy; method of moments; entropy probability density; entropy criterion; probability theory; statistical solutions; sequential Wald analysis; risk; damage; gaming models.
References
1. Смагин, В. А. Приближённое определение функции распределения энтропии / В.А. Смагин, С.Ю. Смагин // АВТ. – 2010. – № 2. – С. 27–32.
2. Смагин, В. А. К определению энтропии функций принадлежности в теории нечётких множеств / В.А. Смагин, И.Ю. Парамонов // Информация и космос. – 2014. – № 3. – С. 28–34.
3. Deshmukh, К. С. Generalized Measures of Fuzzy Entropy and their Properties / K.C. Deshmukh, P.G. Khot, Nikhil //World Academy of Science, Engineering and Technology. – 2011. – Vol. 5. – Issue 3. – P. 93–106.
4. Maritsas, C. Civilization and natural selection 2 / C. Maritsas. – Sofia: Sofia University Press, 2007.
5. Харкевич, А. А. О ценности информации / A.A. Харкевич // Проблемы кибернетики. – 1960. – № 4. – С. 53–57.
6. Стратонович, Р. Л. Теория информации / Р.Л. Страто- нович. – М: Советское радио, 1975. – 424 с.
7. Neyman, J. Statistical research memoirs / J. Neyman, E.S. Pearson. – London: University College, 1936. Vol. 1. – P. 1–37.
8. Тарасенко, Ф. П. Введение в курс теории информации / Ф.П. Тарасенко. – Томск: Изд-во. Томского ун-та, 1963. – 240 с.
9. Вальд, А. Последовательный анализ / А. Вальд. – М: Физматгиз, 1960. – 328 с.